PRODUCT DATA SHEET

23µm BULK ASSEMBLY ELEMENT

Smart Filtration Solutions's 23µm Bulk Assembly Element fits Smart Filtration Pre-Filter Particulate Bulk Assembly.

Donaldson Synteq ® Synthetic Filter Media

Media Efficiency per ISO16889 β 23μm(c)= 1000 / 99.90% Efficiency

Donaldson-developed Synteq ® synthetic filter media has smooth, rounded fibers for low resistance to fluid flow. Synteq ® media is ideal for filtering synthetic fluids, water glycols, water/oil emulsions, HWCF and petroleum-based fluids.

Max Flow Range:

317 US GPM / 1200 LPM (Diesel Fuel)

Operating Temperature:

40°F to 190°F / -40°C to 88°C

Outer Diameter:

188.98 mm (7.44 inch)

Inner Diameter:

123.44 mm (4.86 inch)

Length:

558.8 mm (22.00 inch)

Manufacturer:

Donaldson Company, Inc.

Country of Origin:

Canada

Gross Weight in Kilograms:

4.65

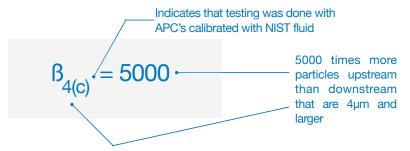
ISO=International Standards Organisation

NFPA = National Fluid Power Association

Understanding Liquid Filter Efficiency

This information is provided as an aid to understanding filter efficiency terminology based on current ISO, ANSI and NFPA test standards.

What Is a Beta Ratio?


Beta ratio (symbolized by β) is a formula used to calculate the filtration efficiency of a particular fluid filter using base data obtained from multipass testing.

In a multi-pass test, fluid is continuously injected with a uniform amount of contaminant (i.e., ISO medium test dust) then pumped through the filter unit being tested. Filter efficiency is determined by monitoring fluid contamination levels upstream and downstream of the test filter at specific times. An automatic particle counter is used to determine the contamination level. Through this process an upstream to downstream particle count ratio is developed, known as the beta ratio.

The formula used to calculate the beta ratio is:

Beta $ratio_{(X)} = \frac{particle count in upstream fluid}{particle count in downstream fluid}$

where(x) is a given particle size

What is Efficiency?

The beta ratio is commonly used to calculate the filtration efficiency of a filter and can be converted into a percentage of efficiency at a given particle size.

The formula used to calculate efficiency is:

Efficiency_(x) =
$$\frac{\beta - 1}{\beta}$$

where(x) is a given particle size

$$\beta_{4(c)} = 5000$$
 is same as 99.98% @ 4µm

ß5000 is 99.98% for particles 4µm and greater

How Big is a Micron?

Compare a micron size to these familiar particles.

Grain of table salt	100µm
Human hair	80µm
Lower limit of visibility	40µm
White blood cell	25µm
Talcum powder	10µm
Red blood cell	8µm
Bacteria	2µm
Silt	<5µm

Beta Ratio	Efficiency
(at given particle size)	(at the same particle size)

1.01	1.00%
1.1	9.10%
1.5	33.30%
2 (Nominal)	50.00%
5	80.00%
10	90.00%
20	95.00%
75 (Absolute)	98.70%
100	99.00%
200	99.50%
1000	99.90%
2000	99.95%
5000	99.98%

- Without Beta Ratio / Efficiency information, Micron rating alone is meaningless.
- Focus must be on Beta Ratio, rather than just Efficiency %, as we can see above, 98.70% & 99.98% might not sound too big of a difference but in Filtration World, that's a huge difference.

