PRODUCT DATA SHEET **7μm ST FILTER**

Smart Filtration Solutions Ultra High Efficiency Filters are designed with Donaldson's proprietary synthetic media to remove 99.95% of abrasive particulates in a single pass. All our filters are equipped with Viton® seals to have optimum compatibility with various fuels & oils.

7µm(c) @ 82000 99.95% Efficiency (per ISO 16889)

D.E.R.T (Donaldson Electrostatic Reduction Technology)

Target Cleanliness: 16/14/11 (per ISO 4406:99)

Max Working Pressure:

Rated Static Burst:

Max Flow Range:

Operating Temperature:

Outer Diameter:

Length:

Manufacturer:

Country of Origin:

40

35 30

20

15 10

0

Pressure Drop (PSI) 25

Gross Weight in Kilograms:

350PSI / 24.1bar (per NFPA/t3.10.17)

800PSI / 55.2bar (per NFPA/t3.10.17)

65 gpm / 246 lpm

40°F to 190°F / -40°C to 88°C

4.60 Inches (117 MM)

14.24 Inches (362 MM)

Donaldson Company, Inc.

CA (Canada)

2.35

7μm ST FILTER Flow Rate (LPM)

500 cSt

250 cSt

200 cSt

150 cSt

90 cSt

2.5

2.0 (BAR)

1.5 0.1 Pressure Drop (B

0.5 32 cSt 20 cSt 0.0

ISO=International Standards Organisation

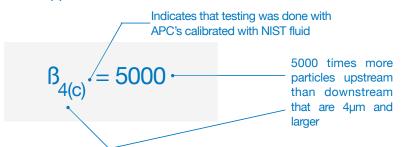
NFPA = National Fluid Power Association

1500 c\$t 750 cSt

Understanding Liquid Filter Efficiency

This information is provided as an aid to understanding filter efficiency terminology based on current ISO, ANSI and NFPA test standards.

What Is a Beta Ratio?


Beta ratio (symbolized by ß) is a formula used to calculate the filtration efficiency of a particular fluid filter using base data obtained from multipass testing.

In a multi-pass test, fluid is continuously injected with a uniform amount of contaminant (i.e., ISO medium test dust) then pumped through the filter unit being tested. Filter efficiency is determined by monitoring fluid contamination levels upstream and downstream of the test filter at specific times. An automatic particle counter is used to determine the contamination level. Through this process an upstream to downstream particle count ratio is developed, known as the beta ratio.

The formula used to calculate the beta ratio is:

Beta $ratio_{(X)} = \frac{particle count in upstream fluid}{particle count in downstream fluid}$

where(x) is a given particle size

What is Efficiency?

The beta ratio is commonly used to calculate the filtration efficiency of a filter and can be converted into a percentage of efficiency at a given particle size.

The formula used to calculate efficiency is:

Efficiency_(x) =
$$\frac{\beta - 1}{\beta}$$

where(x) is a given particle size

$$\beta_{4(c)} = 5000$$
 is same as 99.98% @ 4µm

ß5000 is 99.98% for particles 4µm and greater

How Big is a Micron?

Compare a micron size to these familiar particles.

Grain of table salt	100µm
Human hair	80µm
Lower limit of visibility	40µm
White blood cell	25µm
Talcum powder	10µm
Red blood cell	8µm
Bacteria	2µm
Silt	<5µm

Beta Ratio	Efficiency
(at given particle size)	(at the same particle size)
1.01	1 00%

1.01	1.00%
1.1	9.10%
1.5	33.30%
2 (Nominal)	50.00%
5	80.00%
10	90.00%
20	95.00%
75 (Absolute)	98.70%
100	99.00%
200	99.50%
1000	99.90%
2000	99.95%
5000	99.98%

- Without Beta Ratio / Efficiency information, Micron rating alone is meaningless.
- Focus must be on Beta Ratio, rather than just Efficiency %, as we can see above, 98.70% & 99.98% might not sound too big of a difference but in Filtration World, that's a huge difference.

